GIS Advances and Transportation Planning

Denver Tolliver

Director, Upper Great Plains Transportation Institute &

Transportation and Logistics Program

North Dakota State University

Contents

- Evolution of transportation modeling enabled by advances in GIS
- Focus: freight modeling
- North Dakota statewide models
- Inland waterway models for USACE
- Future work and directions
 - Rail transportation

Evolution of Modeling

- Antecedents
 - Spatial modeling
 - Transportation and land use
 - Travel demand modeling
 - Operations research (non-spatial)
 - Infrastructure planning (non-spatial)
- Ad hoc/piecemeal approaches
- Aggregate geographic zones
- Ad hoc → integrated
- Aggregate → detail

Scope of ND Statewide Model

- Origins/destinations
 - 1,945 townships: crop production
 - 770 spacing units: oil production
 - ≈ 435 grain elevators
 - Oil transload facilities
 - Sugar beet piling stations and plants
- ≈ 90,000 road miles
- 4429 bridges
- 8,473 rail/highway crossings: 5,551 public

Objectives/Outcomes

- Forecast vehicle (truck) traffic on individual road segments
- Use traffic (truck) forecasts to estimate highway reconstruction and rehabilitation needs
- Requirements
 - Very specific (disaggregate) model
 - Fine-level land use model
 - 3,000+ origins/destinations

Modeling Steps

- Economic activity forecasts
- Trip generation (productions and attractions)
 - Quantity (e.g., tons, bushels, gallons)
 - Truckloads (by type of truck)
- Routing/network assignment
- Segment trips: truck ADT
- Investment needs models

ND Model Architecture

- Citilabs Cube
 - Voyager: routing, gravity model, assignment
 - Analyst: initial predictions → adjusted predictions → revisit initial assumptions
 - Cargo: truck traffic not specifically modeled
 - Based on Economic Census/County Business Patterns
- Network
 - ND GIS hub
 - HERE data from Citilabs (TIGER Files)

Network Enhancement

- Embed/connect bridges (NBI)
 - Apply bridge restrictions in routing
 - Weight limits/obsolete structures
 - Enhanced detour distance
- Embed/connect rail-highway grade crossings
 - Highway and rail network
 - Model train and truck traffic at same crossing
 - Truck traffic forecast at specific crossings

Agricultural Land Use Model

- Crop production data from NASS
- Convert crop satellite image to polygons
- Calculate area within crop polygon
- Calculate land areas of county and subdivisions
- Estimation production in polygon: area x yield
- Use reported county production to adjust initial estimates

Crop Production and Location

Grain Distribution Network

Crop Movement Projections - Wheat

Ohio River Basin Grain GIS Model

Developed for the U.S. Army Corps of Engineers

River Basin Network: Abstract Representation

Complex Analysis Process

- If a lock or dam fails, the distribution path of a commodity may change at origin
- Instead of continuing to ship to a dock located upstream of a failed lock, an inland elevator may ship by rail or truck to a downstream dock
- As time progresses, decisions are made farther up the supply chain
 - If prices offered by elevators change as a result of changes in transportation costs, farm producer may sell to a different elevator or utilize an alternative marketing channel

Grain Marketing Channels

Network Flow Patterns

Agricultural Land Use Model: Ohio River Basin Study

8,032 County Subdivisions

State	Subdivisions
Illinois	1,710
Indiana	1,011
Kentucky	493
Ohio	4,818

Crop Production: Ohio River Basin

Elevator Network: Ohio River Basin

Future Work and Directions

- Railroads: start with FRA/ORNL network
 - Expand segment attributes
 - Terminals
 - Highway grade crossings
 - Routing/risk assessment
 - Emergency response
- Highways
 - Bridges and structures
 - Impedance functions/friction factors
 - Inherently non-linear
 - Congestion effects